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LL-Ascorbic acid in organic synthesis: DBU-catalysed
one-pot synthesis of tetramic acid derivatives from

5,6-O-isopropylidene ascorbic acidI
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Abstract—Reaction of 5,6-O-isopropylidene-2,3-bis-O-alkyl ascorbic acid with different amines in the presence of DBU at ambient
temperature resulted in the formation of 3,4-bis-O-alkyl-1-alkyl-5-(2-hydroxy ethyl)-5-hydroxy-1,5-dihydropyrrol-2-ones in moder-
ate yields.
� 2006 Elsevier Ltd. All rights reserved.
Tetramic acid derivatives are the key structural core
found in a variety of natural products including many
antibiotics such as melophilin B, reutericyclin, tiranda-
mycin, BU2313A, blasticidin A and vancoresmycin.1–5

The wide spectrum of biological activities in this class
of molecule include potent antiviral, antibiotic and anti-
fungal properties as well as cytotoxicities and anti-
tumour action.6–8 These compounds have also been
designed as glycine site N-methyl-DD-asparatate (NMDA)
antagonists for the treatment of neurological disorders.6

One such prominent molecule, melophilin B, is depicted
in Figure 1.
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Figure 1.
Recently a number of solution- and solid-phase synthe-
ses of tetramic acids have been reported.9–13 Ascorbic
acid has been used in organic synthesis for the prepara-
tion of many intermediates and biologically active mol-
ecules. Our interest in ascorbic acid chemistry arose
from our quest for new drugs against tuberculosis. Thio-
lactomycins and thiotetronic acid derivatives, which
show antitubercular activity via mycobacterial FAS-II
inhibition14a,b and many 5-hydroxymethyl tetronic acid
analogues exhibit HIV protease inhibitory activity.14c

We were interested in the synthesis of compounds where
the ring oxygen of ascorbic acid is replaced with nitro-
gen and the resulting core, a tetramate, might serve as
a good pharmacophore. Ascorbic acid as a synthon
has been used in the synthesis of pyrano[3,4-b]indoles
and a variety of other heterocycles by Preobrzhen-
skaya’s group.15 Very recently Dallacker’s group16 and
Khan et al.17 reported the reaction of liquid ammonia
and amines with ascorbic acid derivatives to give lac-
tams. Encouraged by their reports we decided to synthe-
sise tetramic acid derivatives from a suitably protected
ascorbic acid.

The reaction of 2,3-O-bis-allyloxy-5,6-O-isopropylidene
ascorbic acid 2a, prepared by the slightly modified meth-
od reported earlier,18 with n-butylamine in THF at
0–40 �C did not result in any product as was evident
from TLC. However, addition of DBU as catalyst led
to the formation of several products (TLC) and
compound 2a was totally consumed within 10 h at ambi-
ent temperature. Column (SiO2) chromatography of the
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crude reaction mixture led to the isolation of only two
compounds as major and minor products. Other com-
pounds (in very minute amounts) could not be isolated
in pure forms. The major compound isolated was found
to be 3,4-bis-allyloxy-1-propyl-5-hydroxy-5-(2-hydroxy-
ethyl)-1,5-dihydropyrrol-2-one 4a in 50% yield. The
structure was confirmed from spectroscopic data and
analysis.19 The minor product was characterised as
3,4-bis-allyloxy-5-(2-hydroxyethylidene)-5H-furan-2-one
3a in 10% yield. The Z geometry of the double bond in
this compound was apparent from its PMR spectrum
and its structure was also evidenced on the basis of spec-
troscopic data. Careful monitoring of the reaction by
TLC showed that 2a was formed first and with the pas-
sage of time it was converted into 4a. We reacted 3a
under similar conditions with n-butylamine to give 4b
Table 1. Synthesis of 2,3-O-substituted-1-alkyltetramates (4a–m)

Entry R1 R2 Reaction

4a –CH2CH@CH2 n-Propyl 15
4b –CH2CH@CH2 n-Butyl 16
4c –CH2CH@CH2 n-Hexyl 14
4d –CH2CH@CH2 n-Octyl 15
4e –CH2CH@CH2 n-Dodecyl 10
4f –CH2CH@CH2 Benzyl 8
4g –CH2CH@CH2 –(CH2)5– 15
4h –CH2CH@CH2 Adamantyl 20
4i –CH2C6H5 n-Propyl 12
4j –CH2C6H5 n-Butyl 7
4k –CH3 n-Butyl 9
4l –CH3 n-Octyl 8
4m –CH3 Benzyl 8

a After column chromatography.
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Scheme 1.
in good yield. Similarly, reaction of 2,3-allyloxy-5,6-
O-isopropylidene ascorbic acid with other amines in
the presence of DBU at ambient temperature led to
the formation of the respective 1-alkyl tetramates (4c–
4h) in good yields along with the 5-hydroxyethylidene
products in minor amounts (Table 1).

To see the effect of 2,3-alkoxy substitutents on this reac-
tion we carried out the reaction of 2,3-bis-benzyloxy-
5,6-O-isopropylidene ascorbic acid 2b and 2,3-bis-meth-
oxy-5,6-O-isopropylidene ascorbic acid 2c, which were
reacted with n-butylamine separately. The products
obtained were the respective 1-alkyl tetramates 4j and
4k in moderate yields along with the intermediate ethyl-
idene derivatives (3b and 3c) in 615% yields. There was
no major improvement in the yield of the isolated
time (h) % Yielda of (4a–m) % Yielda of (3a–c)
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Figure 2. A plausible mechanism of reaction.
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products in any of the reactions suggesting that 2,3-
O-substitutents do not affect the course of the reaction.
Dichloromethane, ethanol and chloroform were also
used as solvents in this reaction but resulted in no
improvements in the yields. 4-Dimethylaminopyridine
and triethylamine, when used as bases, did not lead to
any reaction (Scheme 1).

The introduction of a nitrogen atom in place of the oxy-
gen atom in the ring of ascorbic acid leading to forma-
tion of tetramates can be explained via intermediates
3a–c (Fig. 2). In fact, the formation of these intermedi-
ates was evident from TLC after just a few minutes
and with the passage of time they were consumed to give
the respective products. A reaction mechanism for this
reaction most probably involves the abstraction of a
proton from C-4 of the ascorbic acid derivatives fol-
lowed by b-elimination of acetone from the 5,6-O-iso-
propylidene unit of 2 resulting in the unsaturated 5-
ethylidene derivatives 3a–c. Such a rearrangement has
been reported by Poss et al.20 during reaction of a 5,6-
O-isopropylidene derivative with t-BuOLi in t-BuOH
at ambient temperature. Once the unsaturated lactone
3 is formed, it would undergo a ring-opening reaction
with the amines to give the enol-keto-amide 5. The latter
would undergo intramolecular ring closure to give the
lactams or tetramates, (Fig. 2).

In summary, we have developed a simple, one-pot and
novel method for the synthesis of tetramic acid deriva-
tives from the reaction of a 5,6-O-isopropylidene ascor-
bic acid and amine nucleophiles in the presence of DBU.
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